طبقه بندی جنسیت با استفاده از تصاویر چهره
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه تفرش - دانشکده برق
- نویسنده ویدا خدابخشی
- استاد راهنما فرشید حاجتی
- سال انتشار 1393
چکیده
پردازش تُنُک سیگنال ها به عنوان ابزاری قدرتمند و جایگزینی کارآ برای تبدیلات کلاسیک کامل طی دهه ی اخیر به شدت مورد توجه قرار گرفته است. در این رهیافت می خواهیم از بین تعداد زیادی سیگنال پایه، که در حالت کلی تعدادشان خیلی بیشتر از بعدشان است، کم ترین تعداد را برای نمایش یک سیگنال انتخاب کنیم. هر سیگنال پایه یک «اتم» و مجموعه ی این اتم ها یک «دیکشنری» نامیده می شود. این عمل در حالت کلی دشوار بوده و جزء مسائل np-hard است؛ چرا که نیازمند یک جستجوی ترکیباتی است. در سال های اخیر اما با ارائه ی پشتوانه های تئوریک و معرفی الگوریتم های عملی نشان داده شده است که تنک ترین نمایش یک سیگنال در یک دیکشنری فوق کامل تحت شرایطی یکتا بوده و می توان این جواب را در زمان محدود به دست آورد. به این ترتیب این مبحث به سرعت در کاربردهای گوناگون پردازش سیگنال از جمله فشرده سازی داده ها، جداسازی کور منابع، بهبود تصاویر، تصویر برداری پزشکی، تشخیص الگو و ... مورد استفاده قرار گرفت. دو مسأله ی مهم در پردازش تُنُک وجود دارد. یکی از این مسائل، پیدا کردن یک دیکشنری فوق کامل مناسب برای یک کلاس مشخص از داده ها است؛ یعنی دیکشنری ای که بتواند برای همه ی سیگنال های آن کلاس، یک نمایش به اندازه کافی تُنُک ارائه دهد. این موضوع منجر به توسعه ی الگوریتم های آموزش دیکشنری شده است. مسأله ی دوم داشتن یک الگوریتم کارآ برای به دست آوردن تنک ترین نمایش سیگنال (یا کدینگ تُنُک سیگنال) است. این مسأله نیز منجر به معرفی الگوریتم های زیادی برای این منظور شده است.
منابع مشابه
طبقه بندی تصاویر فراطیفی با استفاده از مدل آمیخته ی گاوسی و الگوریتم نمونه گیر گیبز
با پیشرفتهای فناوری سنجش از دور و تولید دادههای فراطیفی با اطلاعات طیفی فراوان، استفاده از این دادهها جهت مطالعه دقیق پدیدهها به سرعت در حال گسترش است. تصاویر فراطیفی به دلیل نمایش گسترده خصوصیات طیفی عوارض و پدیدههای سطح زمین در بسیاری از علوم زمین مورد توجه قرار گرفتهاند. یکی از مهمترین کاربردهای تصاویر فراطیفی، طبقهبندی آنها و تولید نقشههای پوشش زمینی بدون نیاز به دادههای واقعیت زم...
متن کاملبهینه سازی طبقه بندی کننده ی ماشین بردار پشتیبان با استفاده از آلگوریتم ژنتیک به منظور طبقه بندی تصاویر پلاریمتریک راداری
طبقه بندی تصاویر ماهواره ای یکی از متداول ترین روشهای استخراج اطلاعات از داده های سنجش از دوری می باشد. با ظهور سنجنده های مایکروویو امکان بهره برداری از اطلاعاتی متمایز از اطلاعات قابل استخراج از سنجنده های نوری فراهم آمده است. دلیل این امر امکان استفاده از ویژگی های متمایز طیف الکترو مغناطیس در محدوده ی مایکروویو است که توسط سنجنده های راداری قابل برداشت می باشد. در این بین تصاویر پلاریمتریک ...
متن کاملطبقه بندی عارضه مبنای تصاویر پلاریمتری سار با استفاده از طبقه بندی کننده های چندگانه ماشین بردار پشتیبان
طبقه بندی پوشش زمین یکی از کاربرد های مهم استفاده از داده های سنجش از دوری است. از میان تصاویر و دادههای مورد استفاده در این مورد، داده های پلاریمتری راداری به خاطر امکان استخراج ویژگی های زیاد و متنوع میتوانند برای طبقه بندی گزینه مناسبی باشند. در این مقاله یک روش عارضه مبنا برای طبقه بندی مناطق شهری با استفاده از داده های پلاریمتری راداری به صورت تلفیق نتایج پیکسل مبنای طبقه بندی svm و قطعات...
متن کاملبهبود طبقه بندی بدون نظارت تصاویر فراطیفی با استفاده از مدل خوشه بندی فازی gustafson-kessel
مدل های خوشه بندی c-means یکی از پرکاربردترین شیوه های طبقه بندی نظارت نشده در آنالیز داده ها به شمار میرود. مدل فازی این روش، یعنی fuzzy c-means، یکی از مشهورترین مدل هایی است که در آن هر داده با یک مقدار درجۀ عضویت بین 0 و 1، به هر یک از خوشه ها اختصاص داده میشود. این مدل خوشه بندی جهت طبقه بندی داده های سنجش از دوری بسیار استفاده شده است. مدل fuzzy c-means از فاصلۀ اقلیدسی جهت خوشه بندی اس...
متن کاملطبقه بندی ضایعه های پوستی از روی تصاویر درموسکپی با استفاده از ویژگی های رنگ و شکل
در این پژوهش الگوریتم جدیدی برای طبقهبندی تصاویر درموسکپی به دو نوع بدخیم و خوشخیم ارائه شده است. ابتدا یک مرحله پیشپردازش دو مرحلهای شامل فیلترگذاری جهت حذف نویز و فیلتر همومورفیک جهت ارتقاء کیفیت تصویر اعمال میشود. سپس با استفاده از روش آستانهگذاری Otsu ضایعه از نواحی سالم جدا میشود. سپس ویژگیهای شکل و رنگ از تصویر قطعهبندی شده، استخراج میشود. ویژگی های رنگ مبتنی بر ممانهای ...
متن کاملطبقه بندی ضایعه های پوستی از روی تصاویر درموسکپی با استفاده از ویژگی های رنگ و شکل
در این پژوهش الگوریتم جدیدی برای طبقهبندی تصاویر درموسکپی به دو نوع بدخیم و خوشخیم ارائه شده است. ابتدا یک مرحله پیشپردازش دو مرحلهای شامل فیلترگذاری جهت حذف نویز و فیلتر همومورفیک جهت ارتقاء کیفیت تصویر اعمال میشود. سپس با استفاده از روش آستانهگذاری Otsu ضایعه از نواحی سالم جدا میشود. سپس ویژگیهای شکل و رنگ از تصویر قطعهبندی شده، استخراج میشود. ویژگی های رنگ مبتنی بر ممانهای ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه تفرش - دانشکده برق
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023